Foliage Discrimination using a Rotating Ladar

Andres Castano

Larry Matthies

Jet Propulsion Laboratory
4800 Oak Grove Dr. MS 125-209
Pasadena, CA 91109

Abstract

An outdoor environment presents to a robot objects
that are drivable, such as tall grass and small bushes,
or non-drivable, such as trees and rocks. Due to the
difficulty of discriminating between these classes, tra-
ditionally o robot searches for paths free of any ob-
jects drivable or not. Although this approach prevents
collisions with objects misclassified as drivable, it also
eliminates a large number of drivable paths and by do-
ing so, it may eliminate the only path to a desired des-
tination. We present o real time algorithm that de-
tects foliage using range from o rotating laser. Objects
not classified as foliage are conservatively labeled as
non-drivable obstacles. In contrast to related work that
uses range statistics to classify the objects, we exploit
the expected localities and continuities of an obstacle,
in both space and time. Also, instead of attempting
to find a single accurate discriminating factor for ev-
ery ladar return, we hypothesize the class of some few
returns and then spread the confidence (and classifi-
cation) to other returns using the locality constraints.
The Urbie robot is presently using this algorithm to
discriminate drivable grass from obstacles during out-
door autonomous navigation tasks.

I. Introduction

A major problem for robots during autonomous
cross-country navigation is the discrimination between
drivable and non-drivable objects in the path. Until a
few years ago, outdoor robotics was mostly avoided,
in part because many core research problems (e.g.,
path planning, mapping, etc.) could be studied in-
doors, decoupling them from the uncertainty associ-
ated with unstructured environments. The main ex-
ception was outdoor navigation of man-made roads, as
in the case of the Navlab vehicle and its successors [1].
Ag the state of all-terrain sensors improves, the de-
velopment of cross-country navigation platforms, like
military surveillance robots and search and rescue ve-
hicles, is becoming cost-effective.

The laser radar (ladar) is one of the sensors that
is becoming cost-effective in cross-country navigation.
The ladar is an active sensor that fires a laser beam
and then senses its reflection, or return, from the
scene. From this return, the sensor estimates the dis-
tance, or range, to the object in the scene hit by the
beam. The use of a rotating mirror allows the sen-
sor to sweep the scene about an axis, obtaining a 1-D
range signal (e.g., [2]); placing a 1-D laser on a tilt unit
allows the sensor to sweep an area of the scene, pro-
ducing a range image (e.g., [3], [4])). Ladars are useful
because they provide a range estimate in many situa-
tions where it cannot be estimated with a stereo pair

E-mails: {andres/lhm}@telerobotics.jpl.nasa.gov

W
A T Z
\(X
{7
N 0% oo
o ° @ ,° ® o
N °c° g ° Lo00
@ %o © 00 0@
° o o &
00 P Q-PO @
Ns o AN B 1
o wN_o B \
Ne/™/ oso o o 1 3
O\in\“ Q A0S

Fig. 1. Robot using a ladar to scan a scene

or by other means, e.g., night operation, low-frequency
high-contrast scenes with shadows, etc.

In this paper we describe a real time algorithm that
uses the range estimates of a rotating ladar to detect
foliage in an outdoors scenario. This classification al-
lows the inclusion of tall grass to any free path that
the robot may select while still allowing it to avoid
partially hidden obstacles. Recent approaches to us-
ing a ladar to find obstacles partially hidden by grass
rely on the statistics of the signal (e.g., [5], [6]). In
contrast to these approaches, we exploit the spatial
and temporal localities of the objects in the scene to
classify the returns. The result is a robust algorithm
with a low false alarm rate.

This paper is organized as follows. In Secs. II and
IIT we describe the ladar and provide an overview of
the algorithm. In Secs. IV and V we show how to
select non-foliage returns and how to prune them, re-
spectively. In Sec. VI we describe how we keep track of
the state of the scene. In Sec. VII we describe experi-
mental results using Urbie, an all-terrain autonomous
robot. Finally, in Sec. VIII we present our conclu-
sions.

II. The Ladar System

Consider a mobile robot moving in a field of grass,
as shown in Fig. 1. This figure shows a top view of
a cross-section of the scene, where blades of grass and
tree trunks are represented by small and large white
circles, respectively. Tree trunks A and B represent the
cases where an obstacle is partially hidden by grass
and in the clear, respectively. The robot scans the
scene parallel to the ground, once every 7 seconds.
Each scan spans an angle of € radians and provides
range estimates to objects located farther than d,,.,
and closer than d,,,,. Thus, a sampling interval (i.e.,
the angle between successive fires of the laser) of 6
radians yields at most

N, =Q/6

range estimates per scan. Some estimates might be
missing, e.g., there might not be an object in the path
of the laser within the valid distances or the target
might absorb the light at the wavelength of the laser.
In Fig. 1, the locations of the scene hit by a beam of
the scan are marked with a black circle.

The accuracy of each range estimate is affected by
parameters as varied as distance, environmental tem-
perature and color and pose of the target [2]. In prac-
tice, within a narrow range interval, the error §,, of
an estimate can be considered to vary linearly with
the distance d;. Thus, the range estimate of an object
located at a distance d; is

ro= d, + ((l/ di, + b)
with

6’:”4"1‘ - (S'm'i'n N
(1 = — and b - ()7)1[/”, —a dmin,) <1>

dm,u,;r - dln,i,n,

for d'mwm, S. dl S dm,u,fl;-

Finally, we consider negligible the laser divergence
within the valid range. Thus, the beam is so nar-
row that it cannot hit two different objects located at
different distances which creates erroneous range esti-
mates formed by a combination of both distances.

III. Algorithm Overview

The goal of the algorithm is to discriminate foliage
from other elements of the scene by classifying every
return of each scan as FOLIAGE or NOTFOLIAGE. After
each scan is processed, the algorithm produces three
outputs that describe the results at different levels of
detail. The most detailed output is the array of final
range estimates, Ry, which contains N, elements, each
one corresponding to one return of the scan, as shown
in Fig. 1. If we are not interested in the classifica-
tion of each return then the array Ry summarizes the
results that span a given angle «. Hence, R; has N,
elements where

N; = Q/a.

Finally, the most general output is the flag alarm
which is set to indicate that there is an object in the
scene that is not foliage.

The pseudo-code of the algorithm is:

ANALYZE—LADAR-SCANS ()

R;(1:N,) « 0

Rs(1:N,) <0

forever
A, R] ¢« GET-SCAN-DATA ()
alarim, Ry, Ry] < CLASSIFY (A, R)

Ci= oo —

After initializing the arrays Ry and R, we proceed
to process the scans. Line 4 reads the scan into two
arrays of N, elements, A and R. The element A(4)
is the angle at which the i-th beam was fired while
R(7) is the raw range estimate of the object hit by the
beam. In the rest of this paper we assume that we
have access to No, Ny, dpin and dy,q. -

In the routine CLASSIFY(), we exploit three locality
principles to find NOTFOLIAGE returns. To illustrate

these principles we assume that at time ¢ we found an
obstacle at angle 3, e.g., the tree trunk A in Fig. 1.
First, the locality in time of the obstacle indicates that
it will be located around /3 at time t+7. Second, we use
the locality in space of the obstacle, i.e., an obstacle
must have a large size, spaning over a large angle .
Thus, if a beam hits the obstacle at angle 5 then all
beams that might hit the obstacle must lie within g+
¢». Finally, we use the locality in space of the clear in
the foliage that allowed the laser to hit the partially
hidden obstacle, i.e.; if a beam at angle 3 penetrates
the foliage, then all its inmediate neighbors fired at
A+ A, for A < o, are likely to penetrate the foliage
through this same clear too. These locality principles
hold for any combination of motions of the robot and
the obstacles, as long as the sampling interval, 8, and
the time between consecutive scans, 7, are sufficiently
small.
The pseudo-code of the CLASSIFY routine is

LASSIFY (A, R)
[v, nad2v] <~FIND-LOW-FREQ (A, R)
R. < GET-OBST-CANDIDATES (4, R, v, nad2v)
R. < RELAX-OBST (A, R, R.)
Ry <~REMOVE-NEW-OBST (4, R,)
R; <~REMOVE-THIN-OBST (Ry, W,, O;)
Ry <~ CROP-RANGE (Ry¢, dpmin, dmax)
lalarm, R,] «~UPDATE-AND-ARCHIVE (4, R.)
return (alarm, Ry, Ry)

00 ~1 O Ut ix WO — O

The first three routines determine R,., an array of re-
turns likely to have hit obstacles. The second three
routines determine Ry, that classifies each return of
the scan. Finally, the routine UPDATE-AND-ARCHIVE
saves the results for evalation of future scans. We now
discuss these routines.

IV. Candidate Selection

The first three routines of CLASSIFY select returns
that are likely to belong to obstacles.

A. Finding low-frequency scan regions

The routine FIND-LOW-FREQ uses the estimates R
to find an array R. where it is easy to identify returns
that belong to obstacles. Consider the returns in Fig.
1. If we plot R, as shown in Fig. 2.a, we notice that
the problem of locating the obstacles amid the foliage
is similar to that of recovering a signal buried in noise.
Thus, the obstacles can be recovered better if we filter
out some of the foliage returns, increasing the signal-
to-noise ratio of the scan.

To select a filter that removes mostly foliage returns,
consider all the possible returns within an angle « (i.e.,
the size of our filter) that are centered around an angle
£, as shown in Fig. 1. If the obstacle spans an angle
larger than «, any beam fired at J £ /2 can travel, at
most, as far as the obstacle. Thus, the largest return
of the set is likely to belong to the obstacle if any of the
beams hit the obstacle. Hence, in our case, we can use
a maximum-value filter that will remove mainly foliage
returns. The size of the filter, «;, must be larger than
the sampling interval € and smaller than the angle
spanned by the smallest object that we want to detect
when located at a distance d,,;, from the sensor. The

a) . ‘
B L e AL
“ees® S % te
: : o Ce Cle
R Lel T el T
e I o (e :
e : : :
Y .
MRS S T A AT A N S S
LIS S I N O A I B O B 4 I B O B |
1 : : : : : :
: : H : : ‘Ne
— . A S -
-0 : : : : :
: : : : : O :
o o : :
\ S : o :
) :
: o o:
AN N S TR T S S N W SN S S
t T t 1 T T t + 3 t |
1 : : Ns
c)

1 2 345 67 8 9 10 11 Ns

Fig. 2. a) The estimates of the example shown in Fig. 1, b)
the array v of maximum range values, ¢) its derivative, d)
second derivative and e) the absolute value of its second
derivative divided by v

result of applying such filter to nonoverlapping win-
dows of R is shown in Fig. 2.b. Within each window,
a black dot indicates the maximum return selected by
the filter, a white dot indicates a return filtered out,
and a solid line indicates the value of the resulting fil-
tered scan v. Since, in this example, o =~ 2 6 then v
has Ny ~ N, /2 elements.

The next step is to identify low frequency regions of
the array v that might indicate the presence of an ob-
stacle using the magnitude of its first or second deriva-
tives. In Figs. 2.c-d we show approximations of these
derivatives for the example, found using forward dif-
ferences. If the face of the obstacle, as mapped on the
array v, is either constant or follows a ramp function,
then the magnitude of the second derivative is small.
Thus, we are able to identify objects of any shape and
in any pose with respect to the sensor, as long as their
surfaces are locally flat, by searching for areas of small
magnitude in the second derivative.

The last step of this routine is to generate the array
nad2v which stands for normalized absolute value of
the second derivative of v. The absolute value is used
to allow a magnitude-based thresholding of the sec-
ond derivative of v. Furthermore, a normalization of
nad2v by the distance to the object, removes the bias
introduced by the fact that objects located at different
distances have a different associated noise that affects
the measure of their frequency.

The pseudo-code of the FIND-LOW-FREQ routine is

FIND-LOW-FREQ (4, R)

1 w(l:N,)«0

2 forr <« 1to N,

3 i+ |A(r)/al +1

4 if R(r) > v(4)

5 v(i) « R(r)

6 fori+—1toN,—-1

7 dv v+ 1) —v(i)
8§ fori+1toN,—2

9 if v(i) =0

10 nad2v < 0

11 else

12 nad2v < |dv(i + 1) — dv(i)| / v(4)

13 return (v, nad2v)

Lines 1-5 filter R and generate v. Lines 6-7 approxi-
mate the derivative of v using forward differences and,
finally, lines 8-12 generate the absolute value of the
second derivative of v normalized by v.

B. Selecting candidates

The GET-OBST-CANDIDATES routine selects from R
those returns that are most likely to be obstacles re-
turns. The pseudo-code of this routine is

ET-OBST-CANDIDATES (A, R, v, nad2v)

R.(1:N,)+ 0
for i+ 1 to N,

Tk(l/) — K| +MaXx (Th— (/)7 Tk._g(i))/2
done < 0
while done = 0

done «+ 1

forr «+~ 3 to N, — 2

i+ [A(r)/a] +1

OO\]@CJ(.JAC,JM;—AQ

9 if v(i) =0 or R(r) = Re(r) or R(r) =0
10 continue
11 if (R(r) =v(i) and
nad2v(i) = MIN(nad2v(i), Ty (j)[jtjﬂ._))
12 R(.('r) « R(r)
13 T (i) = Ty (i) +)
14 T;,(/il) Ty ii1)+()/2
15 Tp(i£2)=Te(i £2)+35/3
16 done ¢ 0

17 Tpp & Ty
18 Ty T
19 return(R,)

It returns an array of candidates R, which is zero ex-
cept at the locations of returns for which there is a
strong evidence that belong to obstacles.

A small magnitude of nad2v(i) indicates a signal
with low frequency components which might indicate
the presence of obstacles. For example, in the plot of
nad2v shown in Fig. 2.e, of the five locations with a
small magnitude, the locations 1 and 10 correspond to
obstacles while 4 and 5 correspond to low frequency
arcas caused by a lack of signal. Thus, an obstacle in
an area i can be observed if the value of nad2v(i) is
smaller than a threshold T} (i). In lines 2-3 we set this
threshold to the sum of a constant K| and a function
of the thresholds found for this location in the two
previous scans. We describe the function that we used
in Line 3; other functions that raise the threshold at
locations where thresholds were large in previous scans
could also be suitable.

The main part of the routine updates the arrays
of candidates R. and thresholds T}j. A fast-rejection
condition, in line 9, rejects those areas of the scan with
no returns (i.e., v{i) = 0), individual locations with
no return (i.e., R(r) = 0) and locations that already
contain a candidate (i.e., R(r) = Re(r)). The update
condition, in line 11, states that a return is likely to be
from an obsm(le if it was selected by the maximum-
value filter (i.e., R(r) = v(i)) and, if together with its
four closest nmg,hb()m it spans a low frequency region
(i.e., nad2v is smaller than all the thresholds within
a ve(,:init,_y of 2). If the update condition is verified,
the array of candidates is updated with the value of
the estimate (i.e., R.(r) = R(r)) and, having detected
this position as an obstacle, all the thresholds of the
neighborhood are raised by some fraction of a value 4.
As shown in lines 13-15, we raise more the thresholds
of locations close to the identified obstacle than those
away from it.

C. Reevaluating returns near to candi-
dates

The non-zero locations of R, are very likely to be
obstacles but to achieve this confidence we sacrificed
resolution that we now must recover. At this point,
a value of R, can only be a candidate if it has the
value selected by the maximum-value filter. The goal
of RELAX-OBST is to use the location of each obstacle
in R, to reevaluate the returns inmedeately adjacent,
to it. The pseudo-code of this routine is

RELAX-0OBST (4, R, R.)

1 done + 0
2 while done = 0
3 done + 1
4 for r <~ 3 to N, — 2
5 i A/ ol
6 C 14+ Ky (Cpy (i) + Cr—2(1))
7 T « C(aR(r) +b)
8 if R.(r) =0 and
25 ((Re(r+j) >0and

= R - Rir 4 9) < T)
9 R.(r) < R(r)
10 done < 0

11 return (R,)

The main loop updates the array of candidates R, un-
til there is a reevalutation of the returns of R that does
not lead to an update of R.. As indicated in lines 8-9,
a return becomes a candidate if it was not previously
a candidate and if any of its adjacent returns is both
already a candidate and is such that the difference be-
tween the two returns is smaller than a threshold T
Hence, we use the locality in space of the obstacles to
reevaluate a return adjacent to a return that is known
to belong to an obstacle; if two adjacent beam hit tar-
gets located at about the same distance and if we know
that one of the beams hit an obstacle then it is very
likely that the other beam hit the obstacle too.

The key for succesful updating is the threshold T
which is composed of two elements, as described in
lines 6-7. The first element is the scalar C, larger
than unity, which is some function of the arrays Cj_,
and Cj_» that contain information about the location
of obstacles in the previous two scans, i.e., these ar-
rays keep track of obstacle likelihood over time in the
same way that the arrays T)._; and T} _, kept track of
previous thresholdings in the GET-OBST-CANDIDATES
routine. We will describe these arrays later, when we
discuss the routine where they are updated. The sec-
ond element of T is our approximation to the error of
the estimate, i.e., a linear function that increases with
range with parameters given by Eq. 1. Thus, a re-
turn adjacent to a candidate return is updated to be
a candidate if the difference between their ranges lies
within the expected error for that distance; if we have
evidence that an obstacle has been sighted before at
this location, then C' > 1 relaxing the expected error.

V. Candidate prunning

The second three routines of CLASSIFY return a final
classification Ity of each return based on prunning the
array of candiates R.. The objective of this prunning
is to keep a low false alarm rate.

The first prunning exploits the time and space lo-
cality of the obstacles. The code of this routine is

REMOVE-NEW-OBST (4, R,.)

1 forr+ 3toN,—

2 i<—L4(1)/(vJ+1

3 if ﬂ)idl_)(c;,_l(.j)—(] and Cj._»(j) = 0)
4 Rf(l) «~0

5 else

6 Ry (r) « R.(r)

7 return (Ry)

Lines 3-7 state that a candidate in R.(r) is a final ob-
stacle in Ry(r) only if an obstacle was located in the
neightborhood in either of the previous two scans. An
obstacle at a given location will be identified as a pre-
viously seen obstacle regardless of whether it moves
slightly or is temporarily occluded. However, a pre-
viosly seen obstacle will be identified as a new obsta-
cle (and not added to Ry) if its position with respect
to the ladar changes so fast that its new location is
outside its previous neightborhood or if the occlusion
lasts so long that the evidence of having seen it before
has expired.

The second prunning routine, REMOVE-THIN-OBST,
removes from the list of final obstacles Ry those re-
turns that correspond to isolated hits, i.e, it keeps
an obstacle only if there are at least O, obstacle hits
within a surrounding window of £W, /2 returns, where
W, < N,.. The code of the routine is

REMOVE-THIN-OBST (Ry, Wy, Oy)

d=|W,/2]
T[1: N, « R;[1: Ne]
forr+— d+1to N, —d
if T[] >0
cont 0

for k + —d tod
if Tr+k >0
cont < cont + 1
if cont < Oy
10 R¢[r] « 0
11 return(Ry)

OO0~ Utk WD =

The last pruning routine, CROP-RANGE, removes
from Ry the returns that lie outside the range for
which our linear approximation of the expected er-
ror holds, i.e., it zeros the values of Ry (r) such that

R(r) < dyin, 0 Bp(1) > dypo.

VI. Tracking the Scan Results

The routine UPDATE-AND-ARCHIVE updates the ar-
rays Cr_; and Cj_s5 that keep track of the obstacles
over time. The code of the routine is

UPDATE-AND-ARCHIVE (4, R.)
1 Cr(l:N,)«0

2 Ry (1:Ng)«0

3 alarm + 0

4 forr < 1to N,

5 i+ |A(r)/a) +1
6 if R.(r) >0

7 (/'}‘(l) «— K3

8 if Ry(i) =0 or Ry(i) < R.(r)
9 Ry(i) « R.(r)

10 alarm < 1

11 Croy Ch_y

12 for i+ 1to N

13 if C(i) > Cy-1(d)

i4 . Cio1(i) « Cr(i) + Cr—1(3)
) else
16 Croi(4) Cr_1 (1) = [(Cr (1) + Cr—1 (1)) /2]

17 if C/\77] <0

18 Cr_1 <0
19 return (alarm, Ry)

The first loop of the routine, in lines 4-10, accom-
plishes three things. First, it initializes the array Cj
with a value K3 in all the locations where a candidate
was found. Second, in lines 8-9, it set$ the summary
array Ry to the smallest non-zero return, i.e., if there
is an obstacle in the direction ¢, then R(i) will con-
tain the minimum distance between the robot and the
obstacle. This value can be used to modify a robot tra-
jectory without having to analyze individual returns.
Finally, it raises the alarm flag if there is an obstacle
in the scan.

Lines 11-18 update the arrays Cy._; and Cj_» that
keep evidence of the presence of obstacles. The loop
in lines 12-18 updates the vector Cf_; biasing it in
a positive or negative direction depending on whether
the evidence of the presence of an obstacle is stonger
in this scan that it was in the previous scans, i.e.,
Cr (i) > Ci(i+1). In our case, we have biased the evi-
dence in the positive direction by adding the evidences
of Cy and Cy_y. This is a strong bias that makes the
algorithm aware of the presence of an obstacle very
fast. In contrast, we biased the evidence in the nega-
tive direction by substracting from Cj_, the average
of the evidence of C}, and Cj._,. This is a weak bias
that makes the algorithm forget the presence of an ob-
stacle very slowly. Thus, obstacles that have been seen
in the past, even after many scans, are rapidly identi-
fied when they reappear. Lines 17-18 make sure that
the evidence is never negative.

VII. Experimental results

The algorithm was designed using the data set col-
lected by Jose Macedo and Mike McHenry to support
a related work [5]. The set consists of eight sequences
with a length that varies between 15 and 90 seconds.
The platform used to gather this set was the Urbie
robot, a small track-based platform shown in Fig. 3,
using a custom ladar based on the Accuity AccuRange
4000 [7], [8]. This ladar operates at a wavelength of
1064 nim, 11 the near-visible infrared, and has a sam-
pling interval of § = 10 mradians (i.e., 0.6 degrees).
Each scan has N, = 512 returns and thus, it covers an
angle of @ = 307°. The ladar is capable of estimating
range up to distances of 15m (i.e., 50 ft).

The algorithms have a number of parameters that,
in practice, are easy to adjust and once set, work well
in a wide variety of scenarios. Given the size and speed
of Urbie, we set the range of interest to lie within
dpin = 0.3m and d,, .. = 2m. We measured the er-
ror of the estimates of two known targets within this
range and estimated the coefficients in Eq. 1 to be
a = 0.015 and b = 12.3. This means that we expect
the error to rise at a rate of 1mm for every 70 mmn of
range. The free parameters in GET-OBS-CANDIDATES
were set to K; = 0.025 and § = 0.03. The free param-
eter in RELAX-OBST was set to K, = 0.05. The pa-
rameters of REMOVE-THIN-OBST were set to W, = 21
and O, = 8 so we eliminate returns that do not hit
the obstacle at least 8 times in a span of 15°. Finally,
the free parameter in UPDATE-AND-ARCHIVE was sct,
to K3 = 25.

Once the parameters of the algorithm were set, they
were used in all the scenenarios of the data set. The
results for this set were 4 false alarms (i.e., a return
from grass misclassified as a return from an obsta-
cle) in 1313 images which covered scenarios where the
robot was in the clear and in grass, both sparse and
dense, both while standing still and moving, and with
and without rocks, both in hidden by grass and unoc-
cluded. Figure 3 shows the robot approaching two
rocks partially hidden by sparse grass. The corre-
sponding scan produced by the laser for an area of
2 x 2m7 is shown in Fig. 4. The laser is located at
the origin of the graph. In this top view, the front
of the robot is corresponds to the upwards direction.
The solid pie slices originating from the laser are robot
self-occlusions caused by the on-board camera, the an-
tennas and other structures. The long lines originating
from the laser indicate returns that were identified as
NOTFOLIAGE. All other returns (i.e., the dots of the
graphs) were identified as FOLIAGE.

Fig. 3. Robot facing two rocks at 45° and 315°

aagg T 1 T T T —T— T

1599 A

1adE - - A

5049
LT 4
1589 - 4
ELET) S L L (R B I I

L 1580 1208 505 [508 1600 1568 LT

Fig. 4. Return classification of scene in Fig. 3
Once the prototyping of the algorithm was finished,
it. was implemented in C++ and ported to Urbie,
which runs under VxWorks. At the time of the port-
ing, Urbie had a Sick ladar with a sampling interval of
¢ = 8.7 mradians (i.e., 0.5 degrees) that spanned an

angle of 2 = 7 in each scan and had an expected range

error 70mm at 4m. The porting of the final code to
VxWorks was done in a few hours and the algorithm
was easily integrated to the real-time system of Ur-
bie and tested successfuly in dense grass with hidden
obstacles.

VIII. Conclusion

We have presented a real-time algorithm to identify
foliage present in a natural scene. Once the foliage is
identified, it can be removed from the obstacle list and
the result can be taken into account to reevaluate the
traversability of a path. The algorithm uses the local-
ity of obstacles in time and space to first identify a list
of returns that are likely to be obstacles and then to
prune this list to eliminate false positives. The algo-
rithm was succesfully ported to the Urbie robot and
performed correctly during test on dense foliage scene-
narios. Our future plans are to extend this algorithm
to handle range images and to include the intensity of
the return in making the classification decision.

Acknowledgments

Thanks to Jose Macedo and Roberto Manduchi for
useful discussions and to Mike McHenry for porting
the final code to VxWorks. The research in this pa-
per was carried out at the Jet Propulsion Labora-
tory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Ad-
ministration. The collection of data and the proto-
typing of the algorithm were supported by DARPA,
Mobile Autonomous Robot Software Program, under
contract NAS7-1407, task order 15276. The real-time
implementation and porting to the Urbie robot were
supported by DARPA | Tactical Mobile Robotics Pro-
gram, under contract NAS-1407, task order 15089.

References

(1] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Vi-
sion and navigation for the carnegie-mellon navlab,” IEEE
Trans. Pattern Anal. Machine Intell.; vol. 10, pp. 362-373,
May 1988.

[2] M. Adams, “Lidar design, use, and calibration concepts
for correct environmental detection,” IEEE Trans. Robotics
Automat., vol. 16, pp. 753-761, Dec. 2000.

[3] M. Hebert and E. Krotkov, “3-d measurements from imaging
laser radars: how good are they?,” Intl. Journal Image and
Vision Computing, vol. 10, pp. 170-178, Apr. 1992.

[4] T. S. Kweon, R. Hoffman, and E. Krotkov, “Experimental
characterization of the perceptron laser rangefinder,” Tech.
Rep. CMU-RI-TR-91-01, Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA, Jan. 1991. ‘

[5] J. Macedo, R. Manduchi, and L. Matthies, “Ladar-based
discrimination of grass from obstacles for autonomous
navigation,” in Proc. Intl. Symposium on Ezperimental
Robotics, pp. 111-120, 2000.

[6] J. Huang, A. B. Lee, and D. Mumford, “Statistics of range
images,” in Proc. IEEE Conf. on Computer Vision and Pol-
tern Recognition, pp. 324-331, 2000.

[7] L. Matthies, Y. Xiong, R. Hogg, D. Zhu, A. Rankin,
B. kennedy, M. Hebert, R. Maclachlan, C. Won, T. Frost,
G. Sukhatme, M. McHenry, and S. Goldberg, “A portable
autonomous urban reconnaissance robot,” in Proc. 6th Intl.
Conf. Intelligent Autonomous Systems, 2000.

[8] C. Bergh, B. Kennedy, L. Matthies, and A. Johnson, “A
compact low power two-axis scanning laser rangefinder for
mobile robots,” in Proc. 7th Mechatronics Forum Interna-
tional Conf., 2000.

